7,903 research outputs found

    A Kinetic Model for Cell Damage Caused by Oligomer Formation

    Get PDF
    It is well-known that the formation of amyloid fiber may cause invertible damage to cells, while the underlying mechanism has not been fully uncovered. In this paper, we construct a mathematical model, consisting of infinite ODEs in the form of mass-action equations together with two reaction-convection PDEs, and then simplify it to a system of 5 ODEs by using the maximum entropy principle. This model is based on four simple assumptions, one of which is that cell damage is raised by oligomers rather than mature fibrils. With the simplified model, the effects of nucleation and elongation, fragmentation, protein and seeds concentrations on amyloid formation and cell damage are extensively explored and compared with experiments. We hope that our results can provide a valuable insight into the processes of amyloid formation and cell damage thus raised.Comment: 16 pages+ 5 figures for maintext; 8 pages+ 4 figures for Supporting Material

    On the connectedness of planar self-affine sets

    Full text link
    In this paper, we consider the connectedness of planar self-affine set T(A,D)T(A,\mathcal{D}) arising from an integral expanding matrix AA with characteristic polynomial f(x)=x2+bx+cf(x)=x^2+bx+c and a digit set D={0,1,…,m}v\mathcal{D}=\{0,1,\dots, m\}v. The necessary and sufficient conditions only depending on b,c,mb,c,m are given for the T(A,D)T(A,\mathcal{D}) to be connected. Moreover, we also consider the case that D{\mathcal D} is non-consecutively collinear.Comment: 18 pages; 18 figure

    Stationary states and quantum quench dynamics of Bose-Einstein condensates in a double-well potential

    Get PDF
    We consider the properties of stationary states and the dynamics of Bose-Einstein condensates (BECs) in a double-well (DW) potential with pair tunneling by using a full quantum-mechanical treatment. Furthermore, we study the quantum quench dynamics of the DW system subjected to a sudden change of the Peierls phase. It is shown that strong pair tunneling evidently influences the energy spectrum structure of the stationary states. For relatively weak repulsive interatomic interactions, the dynamics of the DW system with a maximal initial population difference evolves from Josephson oscillations to quantum self-trapping as one increases the pair tunneling strength, while for large repulsion the strong pair tunneling inhibits the quantum self-trapping. In the case of attractive interatomic interactions, strong pair tunneling tends to destroy the Josephson oscillations and quantum self-trapping, and the system eventually enters a symmetric regime of zero population difference. Finally, the effect of the Peierls phase on the quantum quench dynamics of the system is analyzed and discussed. These new features are remarkably different from the usual dynamical behaviors of a BEC in a DW potential.Comment: 9 pages,7 figures,accepted for publication in Journal of Physics
    • …
    corecore